

Multi-processor,multi-board real-time software architecture for Defence Applications

By Subramanian A L, Senior Architect (Software), Mistral Solutions Pvt. Ltd.

Modern day defence electronic systems running complex software applications demand very huge
processing power. These algorithms consume large quantity of data acquired from multiple channels
using high-speed ADCs. Many of these systems require data from multiple channels to be captured and
processed concurrently for churning out useful information. These systems require enormous memory
and high-speed data bus for transfer of data in real-time. These are complemented with processors
running at high clock speeds, with specialized signal/vector processing engines.

In this golden era of shrinking integrated electronic circuits, the scope of building powerful systems, in
small form factors is becoming feasible. Concern regarding the weight and size of defence electronics
systems has driven the designers to look for processing boards, of smaller form factors with very high
processing power. This has led to evolution of board design, especially boards with multiple processors
to meet the demand of these high computation intensive applications.

There are many multiprocessor COTS boards available in the market that specifically target defence
applications. Few of these boards provide a platform, with symmetric architecture, and inherent support
for high-speed data acquisition PMC/XMC/FMC daughter cards. These boards are available majorly on
VME or VPX backplane. Depending on the complexity of the system, multiple boards can be used, with
seamless data communication fabric between the multiple processors and across multiple boards over
the backplane.

This article will outline a basic approach for designing real-time applications using these multi processor
boards.

Operating System

Complex defence electronics systems require real time operating systems for multitasking. Since most of
these systems are bound to be onboard military aircraft, or ships, they have to undergo recommended
certification before deployment. This warrants the use of well proven, certified or certifiable operating
systems. Few important things to be considered are the OS tick, foot print, latencies, context switch
time, flexible scheduling and other aspects such as availability of development tools, required software
stacks and the BSP.

The board vendors often provide sophisticated software libraries for vector signal processing, inter node
communications etc. The functions required though for the system has to be thoroughly profiled, while
arriving at the system time budget.

Design philosophy

We will now discuss a structured design methodology for multiprocessor application design.

Architecture

The architect needs to perform top level mental modeling of the system functionality before
translating it into feasible architecture. Various parameters of the processing boards have to be
thoroughly examined and tradeoffs have to be weighed before arriving at the best suitable
architecture. Various possible architectures have to be studied before zeroing in on the most
efficient one for the application.

The design of a multi processor application follows the usual software design process. The
architecture outlines the software modules and the hierarchy of modules. Detailed design follows the
architecture, addressing much finer aspects of each module, to the level of each data element.

Design

Start off with a context diagram, in which the entire system with all the external interfaces is
visualized. Then the context diagram is broken down to multiple levels to include finer details of the
design. This also involves the modular decomposition. The entire functionality of the system is
broken down into modules, each addressing a specific functionality. This brings a structure to the
application. A good layered approach for the modular decomposition will guarantee scalability and
configurability.

The control and data coupling between the modules has to be defined properly. The Control flow
Diagrams (CFDs) and Data Flow Diagrams (DFDs) would help to get much clarity on the design.

Create a Main module, which will co-ordinate and control all the other identified modules, to provide
the required system functionality. The intended operation of the system has to be broken down into
phases, such as configuration phase, data acquisition phase, processing phase, presentation phase
etc. The performance requirement to be met by the identified modules mapping to the phases of
operation shall be validated.

Budget the time required for all the phases to achieve the required system performance. This step
will help identify the critical modules, in terms of performance and memory usage. All the software
libraries including the signal processing library, and the inter node communication libraries have to
be very well profiled, in a real-like scenario. This helps eliminate unpleasant surprises at a later stage
of development.

Now the job of spreading the application on multiple processing nodes starts. The system
architecture should take care of the load balancing between the various processing nodes. The
application architecture can group the nodes into the controlling nodes and the processing nodes.
The controlling nodes shall utilize the full power available with the processing nodes, by parallel
loading.

The software running on multiple processors are doing actual parallel processing, rather than multi
threaded applications running in a single core.

Analyze the resource requirements of each module for the optimized performance, in terms of
processor time, quantity of input and output data, memory and identify the critical modules. It is the
critical modules that have to be designed to run parallel on multiple nodes. These critical modules
are usually the modules associated with the processing of the captured data.

Complex algorithms require large amount of memory, which may be practically impossible to provide
in a single processor in a useful manner. Splitting and spreading the algorithm on multiple cores or
processors helps to efficiently use the memory available over multiple processors.

The critical processing modules require the input data to be supplied at or faster than the capture
rate. Certain systems would have multiple data acquisition cards, controlled by different processors.
The data captured by all the data acquisition modules have to be made available for processing. This
requires transfer of enormous quantity of data across the processors. This has to be very well
considered while placing the processing modules on multiple nodes.

Apart from the input and output data there are many other messages flowing between all the
processing nodes. These messages have to be short and precise. The number of processing nodes,
the modules to coexist on a node and the number of tasks on each module shall be determined,
using a minimalist approach.

The ease of testing and debugging also has to be kept in mind during the design phase. The access to
data at various levels especially during the integration of multiple modules is important for
debugging.

Data transfer

The software architecture shall consider the data transfer time between the nodes, and shall reduce
it to the maximum extent. An inefficient design involving more data transfers would nullify the
advantages of multi processors.

The data transfer shall be done in such a way that bus contention between the nodes are eliminated
or reduced to the minimum. Though the processing nodes provide multiple DMA channels, they may
be using the same physical bus. Initiating multiple channels of DMA for faster data transfer has to be
carefully done.

The design should carefully avoid choking of various data transfer channels.

Error Handling

The design should consider the state of the system on occurrence of problems at any instant on any
remote node. The system should be bound with proper timeout mechanism to bring back the system
to normal state, in case of error at any level. The errors occurring at any level should be propagated

back, to the top level. The controlling node should have absolute mechanism in place to terminate all
the processing nodes and bring them back to normal.

Power dissipation

The heat generated during the peak loading of the processors/FPGAs has to be balanced, to avoid
hot spots on the boards. Normally, the chassis housing multiple these boards, have fans (in case of
forced air-cooled systems) for the dissipation of heat. The board vendor usually provides software
support for determining the temperature at various points on the board.

Health monitoring

The use of multiple processors warrants a very efficient health monitoring, which has to run on all
the nodes. The error reporting mechanism has to address the propagation of the error to the top

layer on the controlling node.

The various sensors on the board, have to be
monitored periodically, and appropriate actions
has to be taken on occurrence of any undesired
event, for e.g. Temperature rises above the
permissible levels, or voltage drop etc.

Case Study

This case study showcases the design methodology
to build a system, which had 6 channels of data
captured at 100MHz. The system had totally 8
processors spread over two boards. There were
three data acquisition cards. The system captured
and processed about 10MHz on every capture. The
performance requirement was to complete the
operation on 10MHz data within 1 millisecond.

The major phases of the entire operation were
configuration, data acquisition, processing,
packetizing and sending over Gigabit Ethernet
(GbEth) to other subsystem.

The configuration phase budget was 50
microseconds, and it was not a concern since it will be pipelined, and parallel from the second iteration
onwards.

Configuration

Data capture

Processing phase

Send out processed ouput

START

Figure 1: Major phases of operation

Ch1, Ch2 Ch3, Ch4

Data
Acquitision

Node B1
Node D1

Node A1

Node A2

Board 1

Board 2

Host
Application

Health
Monitoring

Node C1

Ch5, Ch6 Node D2Node B2

Node C2

I/P
 D

at
a

 O
/P

 P
K

TS

Processing Health
Monitoring

Data
Acquitision Processing

Processing Health
Monitoring

Main
Module

Data
Acquitision

Health
Monitoring

Health
Monitoring

Specific
Algorithm

Health
Monitoring

Specific
Algorithm

Processing Health
MonitoringProcessingHealth

Monitoring

 Figure 2: Data Capture and Processing nodes

The data capture phase (including the capture and transfer of data to the processing nodes) budget was
about 150 microseconds consistently. The data captured at the three capturing nodes (B1, D1 and D2)
has to be made available for all the processing nodes. The data transfer was optimized using DMA
transfer. The physical bus contention was carefully avoided by initiating non-colliding transfers between
the multiple nodes, at any point of time. All the processing nodes were chosen to be on a single board.
This was done keeping in mind the data transfer overheads.

The processing phase estimate was around 1.6milliseconds. These estimates were as per the profile
figures obtained in a real-like scenario. It was a challenge to spread this critical processing module over
multiple nodes. The processing module was spread over four nodes, each processing about 2.5MHz. This
reduced the estimate from 1.6milliseconds to approximately 500 microseconds. The number of parallel

processing nodes was restricted to four (A1, B1, C1 and D1), since each board had four nodes, and
increasing the processing nodes further did not improve the total performance.

The memory requirement of the processing module for processing the entire 10MHz was approximately
23MB. The requirement came to about 6MB when the processing module was spread over four nodes.
In addition, this module was designed to re-use the memory for every band of operation, to reduce the
memory requirement at any point of time.

The processed data from all the processing nodes was transferred to the controlling node, where it was
packetized after applying required filtering and sent to other sub-system.

Conclusion

The design of a computational intensive defence application should always consider a layered approach
for modularity and scalability. Most of the applications have many requirements changes during the
SDLC, which can be well accommodated only by a scalable architecture. The spreading of the application
across multiple processors has to be carefully executed, considering the data transfer overheads,
memory utilization and other important aspects.

About the Author

Subramanian A L is a Senior Architect (Software) with Mistral Solutions. He holds a Bachelors degree in
Electrical and Electronics engineering from Bangalore University. He has more than a decade of
experience in the embedded domain. He is currently handling few prestigious Indian defence projects.

