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Abstract 
System engineering best pratices are well described in handbooks and guidelines such as the International 
Council on Systems Engineering (INCOSE) handbook [1] and certification guidelines such as the 
ARP4754A Guidelines for Development of Civil Aircraft and Systems [2]. These clearly define the 
development and verification processes including system requirements, functional decomposition, and 
architecture design. 

The OMG (Object Management Group) has defined the Systems Modeling Language (SysML) standard [4] 
specifically to support the system engineering development processes through models. The benefits of 
models versus Documents-based processes has been highlighted in many papers; it allows in particular, 
automated verification of design consistency. 

Several tools such as Papyrus [6] from the Eclipse foundation support the SysML language. Even if, in 
practice, discrepencies still exist amoung tools, it allows, in principle to move, with limited efforts, models 
from one vendor to another one, removing the fear from users to be prisoners from proprietary languages. 

Despite these good arguments, the usage of SysML tools is not yet widely deployed for large industrial 
projects. One concern is the management of Interface Control Documents (ICDs) [4] that is at the center of 
most industries’ system engineering processes, and that is not supported in a straightforward way by 
SysML. 

This paper highlights the challenge in supporting ICDs by SysML tools, and demonstrates how these 
requests are supported by the SysML-based Esterel Technologies’ SCADE System® product [7]. 

Introduction 
Interface Control Documents, know as ICDs, are widely used in all industries, at different levels of the 
system development and verification processes. One definition, independent from the standards, is given at 
http://www.chambers.com.au/glossary: 

 “An Interface Control Document (ICD) describes the interworking of two elements of a system that share a 
common interface. For example, a communications interface is described in terms of data items and 
messages passed, protocols observed and timing and sequencing of events. An ICD may also describe the 
interaction between a user and the system, a software component and a hardware device or two software 
components. This class of document is typically used where complex interfaces exist between components 
that are being developed by different teams. It is jointly prepared by the interfacing groups.” 

As many teams are involved at different levels, different times, and different expertise, in the development 
of complex systems, the difficulty faced by industries is to manage the consistency of the interface of each 
individual component of the system, from the textual requirements to the detailed specification of the 
interfaces for the development of each component separately. The NASA handbook [3] states that a clean 
process must be set up to “identify and resolve interface incompatibilities and to determine the impact of 
interface design changes”.  

The manner proposed in this paper is to rely on model-based technologies to manage all required 
information in a consistent model and generate the ICDs from the model. 

That model shall: 
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 Handle “data” that is the information exchanged by each item of the system (as stated in [3], it 
can be “cognitive, external, internal, functional, or physical”) 

 Handle the system architecture topology(ies) (there may be different architectures; functional, 
logical, physical) 

 Handle fine grain traceability with textual requirements and allow impact analysis of requirements 
or design changes 

This paper details the development of ICDs from the tool point of view; it answers to the question “what 
features shall be supported by an integrated toolset to support a model-based development of ICDs that 
ensure efficiency of user work and consistency of the result. Other aspects, such as organizations, 
qualification w.r.t. standard such as DO-1178C are not elaborated here. 

The paper is structured in the following way: 

First, the principal item of ICDs, the data, is discussed. Second, a major issue with SysML is explained, and 
a solution is proposed. This allows the third section to show how data and system architecture topology 
specified in SysML can be reconciled. The last section can then cover the complete process development, 
from the textual requirements, to the generation of consistent ICDs, and the initialization of the development 
of software components. 

Data dictionary 
A common technique used for the development of complex software predominant systems relies on a set of 
“data” exchanged between the software components of the system. 

These databases are used as detailed specifications exchanged between OEM and equipment 
manufacturers. Also, a set of in-house tools have been developed over the years for verification activities 
and code generation, so it is important for a new system engineering tool to be able to import and export 
data dictionaries saved in these databases. 

The inconvenience of the management of these data with databases is that they are technically separated 
from the model defined in the system engineering tool. Keeping the information coherent, such as data 
names and topological information (source and target of each data), is a challenge. 

The solution proposed is the following: 

1. Data can be defined as SysML values of a block, with a name and a datatype, on which a set of 
properties can be defined (see more details below), 

2. Data are managed in tables allowing easy find/sort/filtering and direct editing of their properties, 
3. Tables of data can be exported/imported as .csv files, allowing inter-exchange with external 

databases, 
4. Data can be allocated on SysML connectors or ports. 
 
These steps are detailed here. 

Data properties 

Data, functional or logical, shall carry information, such as value range, timing information, position in a 
message frame, etc. Defining this set of properties and the value for these properties must be supported in 
a friendly way by the engineering tool. The technical foundation of SCADE System, the Eclipse MDT 
Papyrus project [6], allows for defining such information through the standard profiling mechanism. This 
customization has the advantage of being an effective standard. But, the profiling mechanism is a rather 
low-level mechanism, not easily managed by system engineers who are experts in their domain but not 
necessarily in UML technology. 

To provide the necessary means to system engineers, SCADE System comes with an annotation 
mechanism reused from the SCADE Suite® toolset [7] that has been proven to be very effective in many 
complex industrial projects. A simple textual language allows defining structured information types (aka 
“annotation schema”) associated to any model object, e.g. the SysML block values, that implement the 
data. Annotations are transparently implemented in terms of UML profiles, for interoperability’s sake. 

The data and allocations done as part of the model are, of course, traced with high-level requirements 
where appropriate, and reported in the documentation generated automatically. 



 

 

Import/export data 

As all model objects, data are presented in the object tree view of the IDE. A table representation is also 
available both to provide a comprehensive view of the data defined in a block, with customizable columns to 
display any data properties, are as the key pivot for import/export capability to common separated value 
(.csv) files or MS-Excel tool as presented in the following screenshot.  

 

The column of SCADE System tables are not simple textual columns; they are associated to the data 
properties, as defined in the previous section, or predefined property, for example the datatype property 
inherited from the SysML definition. Exporting content of these tables to Excel or .csv files is a 
straightforward copy of the string contained in each cell. Importing is more challenging, as the textual 
information imported becomes model information. In particular the string “pasted” in the Type column is 
automatically bound to datatype with the same name available in the visibility scope of the block. If such 
datatype is not available in the model, a feedback is given to the user to enrich the model. 

As the amount of data can be considerable in an industrial model, a specific caution has been taken in the 
development of Papyrus to support of tables of more than 10.000 lines. 

Data allocation on topology 

The key aspect of the methodology proposed is to “map” the data as defined in the previous section to the 
architecture topology defined as a SysML model. 

The constructs used from SysML to define an architecture topology are only the Packages, Blocks, Flow 
Ports, and connectors. The mapping is realized by SysML allocations. 

The following figures introduce, with a simple example, the proposed modeling style. More details are given 
in the remaining portion of the paper after a major SysML issue is detailed in the next section, as it must be 
solved beforehand. 



 

 

Classical 
representation 
in SysML. The 
information 
exchanged 
between the 
components 
are expressed 
by the ports, 
carrying in 
particular a 
name and a 
direction. 

 

Data-based 
representation 
in SysML. The 
ports 
represent only 
“gates” 
through which 
the information 
implemented 
as “data” can 
circulate. Data 
are allocated 
to Ports or to 
the connectors 
carrying the 
information 
between the 
ports (all 
allocations not 
displayed 
here). 

 

Note that SysML allocations are also supported in SCADE System tables, allowing a more scalable view 
than the nice, but limited to the size computer screen, graphical representation. This also allows for 
import/export capability. 

Challenges with SysML 
One main issue to deal with is the “multi-instantiation” of architecture components; it is indeed a great 
benefit of modeling language, such as SysML, to support the definition of “blocks”, whatever they represent, 
that can be reused several times in the model through “part”. This feature is naturally used to model the fact 
that, for example, an equipment is “duplicated” in the system.  

Without entering the formal definition of SysML parts versus. blocks, the following example highlights the 
issue system engineers are faced with for the specification of information related to each individual 
component. 

The model as specified with a SysML Block Definition Diagram on the left side of the following figure 
represents a Car with four Wheels, FLW (Front Left Wheel), FRW, RLW, RRW, each Wheel containing one 
tire.  



 

 

Classical SysML modeling tools handle model objects, as pictured in the tree view in the center of the 
following figure: flat list of blocks, each containing parts. The problem arises on the second level of the 
“conceptual hierarchy”: the tools handle only one object to represent the four conceptual tires. There is  no 
direct mean to specify, e.g. the pressure of each of the four tires as there is  only one “object handle”. It is 
not possible to specify that the tires on the left side of the car are allocated to a worker on the left side of the 
manufacturing chain, while the tires on the right side of the car are allocated to a worker on the right side of 
the manufacturing chain. Trying to set such allocations leads to the allocation of all tires (in fact _the_ object 
tire) to both the LeftWorker and RightWorker, as pictured on the right side of the figure with the SysML 
Internal Block Diagram representing the car; all tire graphical representations are bound to the same object. 

 

   

The straightforward means used in practice consists in copying the block Wheel as many times as needed, 
leading the system engineers to manage, manually, the consistency of the copies. 

To allow system engineers to manage, in a straightforward manner, their architecture designs, SCADE 
System manages, automatically, the “replica” from the specification specified with blocks and parts as in the 
BDD shown above. All intermediate “blocks” and “inheritances” are automatically created internally to 
comply with the SysML standard, and are managed by the tool to remain consistent with the user design. A 
simple view, as shown in the following picture, is shown to the user; it abstracts the internal objects, but 
provides “handles” allowing setting property value and allocations to individual conceptual component. 

Thanks to this management, data and architecture topology can now be assembled taking into account the 
replication of component defined once through block types. 

 



 

 

Data and topology reconciliation 
Managing a huge set of data in an industrial model is cumbersome. Two mechanisms facilitate this 
management: 

1. Automatic replication of the data produced by component replica, 
2. Propagation of the data along the hierarchical architecture, 

Data in blocks 

Data being implemented as SysML properties of the blocks, the replication of blocks detailed in the previous 
section is of great help to manage the data. Consider the example presented in the following figure. 

 

Block2 contains two identical parts, Part1 and Part2, defined from the block Block1. The “internal interface” 
of these parts are the same; it is made of data Label_001, Label_002 and Label_003, defined in Block1 (for 
example imported from a .csv file), allocated to its port A429_Out.  

Now, in Block2, these data must represent different information. The replication of Block1 handled by the 
tool makes the data produced by the two parts indeed different information, accessed from Block2 through 
a single path. As shown in the next section, aliasing these names with names local to Block2 is also 
possible. 

Data propagation 

Independently of the multi-instantiation topic discussed in the previous sections, propagating data along a 
path of connectors through intermediate levels of blocks would be better supported by tools than requiring 
many manual, error prone, actions. An interactive IDE allows the system integrator to efficiently specify how 
the data are propagated in the model. 

Data is not necessarily defined in the block producer as shown in the previous section. It should also be 
possible to define all data in one upper block, for example allowing the import of a global data dictionary. 
Data could also be defined on the recipient side so that a block comes as a standalone component defining 
its complete interface independently from the way it is connected. 

Data propagation consists of specifying, without ambiguities at any interface connected to several 
connectors, how each data is broadcasted or multi-casted through the connectors. For that purpose SCADE 
System offers an interactive window showing, for each connector selected, the list of data provided and 
required on both ends. Three actions are proposed:  

 “Pushing” a data from source to target, 

 “Pushing” a data from target to source, 

 “Binding” data selected on the right and left side. 

At the end, before generating ICDs, it is also important to verify globally on the model that the propagations 
have been kept consistent, in particular after model topology modification. To support that needed feature, 
SCADE System comes with a checker that automates the verification of rules that can be customized to 
adapt to the precise methodology defined. Typical rules would be: 

 All defined data is produced, i.e. allocated to an output port 

 No data is “lost” in intermediate connections 



 

 

 No data arrive ex-nihilo on intermediate connections 

 Etc. 

The technical means proposed for data propagation is detailed below. It enforces an important property: all 
allocations between data and block ports is local to block. This allows: 

 The automated replication of the dependencies with block replica, 

 The capability to “export”, and then re-integrate, standalone blocks for efficient collaborative work. 

A data of a block is considered as produced by the block (a “provided data” of the block) if it is allocated to 
an output port of the block. Symmetrically, a data of a block is considered as consumed by the block (a 
“required data” of the block) if it is allocated to an input port of the block. Data of a block that are not 
allocated to any port are internal data of the block. 

When a block is used as a part of another block, the provided and required data corresponding to that part 
are automatically transposed into the enclosing block to make them available there. Initially, those data are 
internal data of the enclosing block (until they are themselves allocated to ports of the enclosing block, 
possibly), and are bound to the corresponding data in the inner block; binding between two data means 
they represent the same data but possibly at different levels in the hierarchy and under possibly different 
names. The initial name of the transposed data is formed by the qualified name of the data being 
transposed (but that initial name can later be changed for readability), and so on recursively. 

Example: 

If a block ‘B’ contains two parts ‘c1’ and ‘c2’ typed by a block ‘C’ having one data ‘d’ connected to a port of 
‘C’, then two data are automatically transposed in ‘B’: 

 ‘c1’.’d’  ‘c1.d’ (can be later renamed by the user to ‘d1’ for example) 

 ‘c2’.’d’  ‘c2.d’ (can be later renamed by the user to ‘d2’ for example) 

The binding relation forms equivalence sets (the set of data bound together). There must be at most one 
producer in the set. For any consumed data, it is possible to retrieve the producer, if any. 

The propagation consists simply in binding data. The tool helps in creating the missing data and its 
allocation to the port. On each connector end, the local data allocated to the end connector port (for a port 
of the block), or local data bound to a data allocated to the port of an inner part, is proposed for propagation 
through that connector. From the selection of one of these proposed data there are three propagation 
cases: 

 A corresponding data already exists at the other connector end: a simple binding between the two 
data implements the propagation. 

 Upward propagation: the data to propagate is already allocated to the port of the inner part; so it 
has been transposed upwards in the block. Upward propagation consists of allocating the 
transposed data to the port of the block. Note that this leads automatically to the creation of a new 
transposed data in each block containing a part of that block, allowing further propagation of the 
data. 

 Downward propagation: the tool creates a new data in the nested block on the other side of the 
connector and allocates it to the connected port of the nested block. This data is therefore 
transposed upwards at the same level as the connector, where it will be bound to the initial data. An 
optimization in downward propagation consists in binding directly the outer data to the just created 
inner data. 

The result of this propagation is shown in the following figure representing a realistic model of an aircraft 
Cabin Pressure Control System (CPCS). Allocations are represented as plain arrows, binding represented 
as dashed arrows. 

At the bottom of the picture: As data Pressure1 of PressureSensor1A is allocated to its port, a transpose 
data PressureSensor1A.Pressure1 (default name) is automatically created by the tool. Same for 
CabinePressure1 from parts Compute1A and Monitoring1A, transpose data renamed x1 and x2 to make the 
name fit in the picture. Upward propagation of x1 and x2 is realized with their allocation on the input port of 
CPU_1A; this creates transposed data x3 and x4. Propagating horizontally the data is realized through the 
binding between PressureSensor1A.Pressure1 and x3 and x4. 

At the top of the picture, downward propagation is highlighted: OFV_SpeedCommand is allocated to the out 
port of Compute1A, so transposed data (renamed) y1 is created by the tool. User propagates it upward until 
block CPCS, then downward until OFC_Actuator, local data named y6. In OFV_AutoChannel1_Board1 a 



 

 

data SpeedCommand is defined and allocated to the port, so a transpose data z1 is automatically created. 
Propagating y6 to SpeedCommand is realized through the binding between y6 and z1. 

 

Data grouping can also be defined within a block to aggregate other data (including other data group). 
When a data-group is allocated to a port or connector, all its data are considered to be allocated too. When 
a data-group is transposed upwards in the block hierarchy, it becomes the group of its transposed data. 
This allows propagating data more quickly, by grouping them when they are related. 

ICDs system development process 
System development and verification processes involve many steps that are out of the scope of this paper. 
A comprehensive methodology handbook for the aeronautic domain can be found in [14]. The focus of this 
paper is on the technical aspects of the production of ICDs. From the tool features detailed in the previous 
sections, an efficient tool supported development process for the ICDs can be set-up.  

The tool itself does not impose a particular process; several ways can be followed. In particular, the System 
Engineering development process can rely of several refinement layers, e.g. functional, logical and 
physical, that are domain and company dependent. 

The overall process can be applied in the same way at any system development level; it consists in: 

1. Definition of the data in items of the system and use a traceability tool to establish a link between 
these model elements and the requirements defined in textual documents. 

2. Specify the connections between the components, and propagate the data along this topology. 
3. Verify the consistency of the model with automated rule checker such as SCADE System checker. 
4. Extract information from the consistent model: ICDs tables, reports, and SCADE Suite operators 

interfaces for critical software components to be developed with SCADE Suite [10, 11, 12]. 

Step 1 can be mainly manual in particular for a totally new system, or heavily rely on the SCADE System 
import feature when a large part of the data pre-exists from a previously developed similar system. 
Traceability is supported by the SCADE LifeCycle Requirements Management gateway tool. It allows 
straightforward impact analysis when requirements are modified. 

Steps 2 and 3 are detailed in the previous section. The important thing is that the checking rules are 
customized to verify that the methodology defined by the method team has been followed by the designers. 

Step 4 is now detailed in the two sections below. 
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When the system development process is set-up in several refinement layers a possible usage of the 
technics presented is the following: 

 As part of the functional analysis of the considered subsystem, the functional data exchanged 
between the functions are defined and allocated on the connectors representing the flow 
dependencies between the functions, 

 When the architecture of the system is defined and the functions are allocated to the architecture 
components, one has to define how the functional data shall be implemented. This is done by 
defining, using the same tool feature, logical data. The functional data are allocated on the logical 
data, which in turn are allocated on the architecture topological elements, connectors or ports, 

 In complex architectures where data are packed/unpacked at several architecture levels, the 
mechanism can be used again, modeling that several logical data can be transported by e.g. a 
message, itself defined as a data allocated to topological elements. This later step involving binary 
encoding and communication protocols has not been yet investigated; we consider for now in the 
paper the functional or logical architecture only. 

Customizable ICDs tables 

Once the data are properly managed in the model, generating ICDs becomes easy as all the required 
information is consistently managed in the tool. The tool offers an Applicative Programing Interface (API) to 
traverse, verify and extract any information for documentation generation from a program or script. 

The SCADE System tool goes a bit further in providing customizable tables: in any block, table of its data 
can be displayed, showing in columns the properties set in annotations attached to the data. Query columns 
can also be specified: through simple user defined scripts interacting with the model API, these columns 
can be filled with e.g. any information extracted from the model. For example the table display below can be 
easy specified: 

 

In addition to the name and datatype of the data, its user defined properties “Min”, “Max”, “SafetyLevel” and 
“Note” are displayed. The content of the user defined “Recipient” column is the result of a query providing 
the name of the final block owning a port onto which the data is allocated. The blocks can be defined as 
“final” with e.g. another annotation. In a similar way, the content of the “Communication” column is the result 
of a query providing the content of a specific annotation set to one of theconnectors through which the data 
“circulate” (i.e. data allocated to its two ends). 

All the information required in ICDs tables can be customized with a few scripts, allowing an always up-to-
date representation of the ICDs. And as SCADE System tables can be exported in a click to .csv files, there’ 
is no need to develop dedicated model reporter or gateway to external data bases. 

Synchronization with SCADE Suite software development tool 
Once the system description is complete and checked, the individual software blocks in the system can 
be refined in the form of models in SCADE Suite. Automatic and DO-178B Level A-qualified code 
generation can be applied to the SCADE Suite models. 

A mapping between SysML block interface and SCADE Suite operator interface has been formally defined 
and implemented in SCADE System Synchronizer [7]. 

The SCADE System Synchronizer tool has been extended to support this new way of specifying block 
interfaces. Instead of synchronizing the block ports with SCADE Suite operator inputs and outputs, it 
relies on the data allocated to these ports. The following figure shows the result of the synchronization 
between such SCADE System block and SCADE Suite. The datatype themselves are translated on user 
request as detailed in [13].  
 

 



 

 

Conclusion 
Keeping ICDs consistent with architecture design drawn with Visio-like tools is not easy and not efficiently 
done with reviews. Managing models make things much more efficient. 

The SCADE System tool proposes a method and tool features to manage Interface Control Document 
(ICDs) in a model based way that is compliant to the SysML standard. 

It relies on block values and annotations transparently implemented in terms of UML profiles. Data 
dictionaries are managed with tables that can be customizable to show any information required with the 
various ICDs. The key feature for a friendly IDE is to manage in a proper way the multi-instantiation and 
propagation of data; these features are implemented in the SCADE System product. 

Finally, the interface of software critical components can be generated automatically from the system 
model. 

The solution reconciles the benefits of the model based technology with the deployed system engineering 
processes based on ICDs. Evaluations are engaged in large aeronautic projects at the time this paper is 
released. 
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