
Read About

High Availability (HA) Clusters

Fault Tolerance Software

HPC Applications for HPEC

Cluster Managers

Shoot The Other Node In The
Head (STONITH)

Info

curtisswrightds.com

Email

ds@curtisswright.com

DEFENSE SOLUTIONS TE
C

H
N

O
LO

G
Y

W
H

IT
E

PA
P

ER

C U R T I S S W R I G H T D S . C O M

Introduction
A fault tolerant system must have the ability to continue processing data even when
a hardware failure occurs. This is accomplished by building duplicate hardware of
all critical components of the system, eliminating single points of failure such as the
processors and power supplies. When a component fails, the software must be able
to detect the failure and handle the switching of the hardware and re-routing of the
data flow. As the next generation of embedded defense systems become even more
complex with more computational power, memory, data, and speed, the problem of
designing effective fault tolerant systems also becomes more difficult. Fortunately, the
High Performance Computing (HPC) world has developed a set of mature, proven
methodologies and tools to support High Availability (HA) clusters. By definition,
availability refers to a level of service provided by applications, services, or systems.
Highly available systems have minimal downtime, whether planned or unplanned.

Figure 1: Layout of a Two-Head Failover Network

HPEC: High Availability by Design

Internal Network

External Network

head1 head2

Dedicated failover
network link

eth2
10.50.0.1

eth2
10.50.0.2

eth1
192.168.32.10

eth0
10.141.255.254

Virtual shared eth1:0
External IP address

192.168.32.10

Virtual shared eth0:0
Internal IP address

10.141.255.254

eth1

eth0

https://www.curtisswrightds.com/?wp-3U-VPX-systems-design-verification
mailto:DS%40curtisswright.com?subject=
https://www.curtisswrightds.com/?wp-intel-xeon

Dissecting the HPEC Cluster
Let’s review the concept of a cluster as it pertains to a
High Performance Embedded Computer (HPEC). A cluster
normally contains a number of processors interconnected
by a high-speed interface such as 10/40 GbE Ethernet or
InfiniBand®. In the world of OpenVPX™, this is known as
the data plane. In addition to CPUs, the system could also
contain GPUs connected via PCI Express® (PCIe). A cluster
also has an internal network, known as the control plane
in OpenVPX systems, and usually includes one or multiple
GbE switches or an InfiniBand fabric.

The Cluster Manager

Because it controls all of the other nodes in the system,
the head node is the most important piece of the cluster.
The head node is the only node connected to an external
network; think of it as the router between the internal and
the external networks. The head node is the master of the
cluster because it controls all the other devices including
the compute nodes, switches, and power distribution
units. The head node can be one of the processors in your
embedded box, a stand-alone computer, or perhaps even
an encrypted data storage device. It provides vital services
to the rest of the system including central data storage, user
management, DNS and DHCP services. The regular, or
compute nodes, are configured automatically by the node
provisioning feature of a cluster manager, such as Bright
Computing’s Cluster Manager. When the system is started,
the compute nodes are PXE-booted with software images
that are stored on the head node, ensuring a node can
always start in a “known state”. This also ensures software
changes can easily be undone since these changes are
only made once in the software image on the head node.
Generally, this removes the need to log directly into the
compute nodes. More importantly, this node provisioning
system eases the administration of the compute nodes
making it a trivial task to replace an entire node in the event
of a hardware failure. The downside is that the head node is
the single point of failure for the entire system.

The “Failover”

The solution to this potential issue is a high availability setup
which is a typical configuration in HPC systems. This is
achieved by replicating the head node to a second processor
or computer, which will be referenced as the passive head
node. In the HA setup, the passive node continuously
monitors the active head node. When it detects that the
active head node has failed, the passive node will assume
control and take possession of the resources, services, and
network addresses; this is called a “failover”. Whenever
possible, the same services are run on both the active and
passive nodes which results in moving fewer services in
the event of a failover. The services running on both nodes
include CMDaemon (for node provisioning), DHCP, TFTP,
NTP, and DNS. During normal operation, the passive head
node is provisioned by the active node. In a typical HA
setup only the NFS and user portal are migrated from the
active node to the passive, therefore saving time if a failover
occurs.

Each head node in an HA setup typically has as, at a
minimum, an external and an internal network interface,
each configured with an IP address. In addition, an HA
setup shares two virtual IP interfaces, one for the external
network and one for the internal network, between the two
head nodes. However, only one node can host the address
and its interface at any given time. During normal operation,
the shared IP addresses and their interfaces are hosted on
the active head node. On failover, the interfaces migrate and
are hosted on the newly active head node. When remotely
logging in to the head nodes for an HA system, users should
use the shared external IP address for connecting to the
cluster, ensuring connection to the active node. Similarly,
inside the cluster, nodes should use the shared internal IP
address to reference the head node. For example, nodes will
mount the NFS filesystems using the shared virtual internal
interfaces to ensure the imported filesystems can still be
accessible in the event of a failover. Shared interfaces are
implemented as alias interfaces on the physical interfaces
(e.g. eth0:0). Again, they become active when a head node
becomes active, and are deactivated when a head node
becomes passive. Please refer to Figure 1 for the layout of
a two-head failover network.

2

CURTISSWRIGHTDS.COM

https://www.curtisswrightds.com/?wp-3U-VPX-systems-design-verification

The Heartbeat Connection

In addition to the normal internal and external network
interfaces on both head nodes, the two head nodes
should also be connected via a direct dedicated network
connection; refer to “eth2” in Figure 1. This interface, known
as a heartbeat connection, enables the two head nodes to
monitor each other’s availability. The monitoring is usually
achieved with a regular heartbeat-like signal between the
nodes such as a ping. If the signal times out, it implies a
head node is dead. When setting up this interface, a simple
UTP cable should be used between the Network Interface
Controllers (NIC) of the two head nodes. This prevents a
possible disruption from using a switch between the two
nodes.

The HA setup also requires some type of shared storage
between the two head nodes to preserve information after a
failover sequence. The shared filesystems are only available
on the active head node which is another reason users
should log in using the virtual address. Logging in directly to
the passive node could result in confusing behavior due to
unmounted filesystems. The shared storage can be either
Network Attached Storage (NAS) or Direct Attached Storage
(DAS). With NAS, both head nodes directly mount a shared
volume from the external device. Using DAS, both head
nodes share access to a block device usually through a
SCSI interface. Although the block device is visible and can
physically be accessed simultaneously on both head nodes,
the filesystem on a block device is typically not designed for
simultaneous access. Attempting to simultaneously access
the filesystem will most likely cause file corruption.

Identifying a Dead Node
Because of the risks involved in accessing a shared
filesystem simultaneously from two head nodes, it is vital
only one head node is active at any given time. Hence
before a head node switches to the active role, it must
receive confirmation the other node is in passive mode or
is powered off. The conundrum remains: how do you tell
when the active node is actually down? Is the active head
node really down or is there a communication breakdown
between the two head nodes? Because the “brains” of the
cluster are communicatively “split” from each other (called
the split brain situation), it is impossible to use only the direct
interface to determine a course of action. On one hand, the
head node could have completely crashed resulting in the
lack of response. On the other hand, the direct interface
between the head nodes might have failed and the active

3

node is merrily working with the rest of system but has
received notices that the passive head node has split from
the system.

To deal with this uncertainty, a passive head node when
facing this situation will transition into a “fencing” mode.
The passive node does not try to kill the active node, but
tries to obtain proof using other methods to determine if
the active node is really down. While trying to decide the
state of the active head node, the passive head node
tags all subsequent actions as a backlog of actions to be
executed later. If the head nodes are able to re-establish
communications with each other before the passive node
deems the active node dead, the fenced-off backup is
compared and synced until the nodes are once again
consistent. If the active head node is still communicating to
the rest of the system, a failover should not be initiated. In a
worse-case scenario, the failover could render the system
unusable.

The STONITH Procedure

One technique used by Bright Computing’s Cluster
Manager to reduce the chances of a passive head node
unnecessarily powering off the active node is to perform a
quorum procedure. When the active head node does not
respond to any of the periodic checks for a period longer
than the “dead time” in seconds (set by the user), the active
head node is declared dead and a quorum procedure is
initiated. The passive node polls all the processors in the
system to confirm if they are in communication with the
active head node. If more than half of the nodes confirm they
are unable to communicate with the active head node, the
passive node initiates the STONITH (Shoot The Other Node
In The Head) procedure and becomes the active node. This
is one instance where the messenger does not get shot.
The STONITH procedure performs a power-off operation
on the current active head node and then verifies the power
is off. For automatic failover to be possible, power control
must be defined for both head nodes.

The HA system can employ an automatic failover as
described above or be configured for a manual failover.
During a manual failover, the operator is notified of the
problem and is responsible for initiating the failover
procedure. Since no automatic power off is done, the
operator must confirm the unresponsive node is powered
off. The capability also exists to switch between automatic
and manual mode during setup and while the system is
running.

CURTISSWRIGHTDS.COM

https://www.curtisswrightds.com/?wp-3U-VPX-systems-design-verification

4

CURTISSWRIGHTDS.COM

Could manual intervention be needed during an automatic
switch over? The short answer is yes. Consider the situation
where the active head node “is not dead yet”, meaning it
is not fully functioning but not totally dead. “Mostly dead”
is where the active head node passes some of the tests
such as ping, status, etc. STONITH is the method used to
guarantee a safe failover. However, STONITH sometimes
fails to complete a clean shutdown when acting on a
mostly dead active head node, which can result in potential
problems with the filesystem or database states, or
maybe the zombie node will remain in the middle of the
transactions. If the system is set up for an automatic failover
configuration, and a mostly dead head node is detected, the
system will not automatically power down the active dead
head. It will remain in the zombie state until it recovers, or
the operator performs the STONITH manually to put it out
of its misery. Before performing the shutdown, the operator
must examine the situation for damage risk.

Another great feature for embedded systems is the ability
to support HA for the compute nodes in the system as
well as the head nodes. Similar to the head nodes, power
control is needed for all regular HA nodes in order to carry
out automatic failover for the ordinary nodes. Regular
nodes use failover groups to identify nodes (two or more)
to form a HA set. During normal operation, one member
of the failover group is active, while the remaining ones
are passive. For regular nodes, the heartbeat checks are
performed using the regular internal network and not a
separate failover network. The active head node performs
the checks, and if a regular active node is deemed dead, it
is powered-off through STONITH and a replacement node
is brought online.

Managing Your HA Embedded
System
At this point, you are probably intrigued by the concepts,
but maybe a little intimidated at the thought of trying to
configure and manage an HA embedded system. This is
where the OpenHPEC™ Accelerator Tool Suite from Curtiss-
Wright flies in to the rescue. Because of the similarity of the
hardware, the maturity of the tools, and the larger installed
user database, importing tools from the HPC community
into your HPEC designed with the OpenHPEC Accelerator
Suite can reduce both cost and time to deployment. The
Bright Cluster Manager is best-in-class in the HPC world for
setting up and maintaining clusters, including HA clusters.
For example, Figure 2 shows how easy it is to setup an HA
cluster for your system.

Bright Computer’s installation wizard starts by guiding you
through the process of installing your cluster from bare
boards to a full development system in a matter of minutes.
By answering a few questions about the system you are
building, Bright’s Cluster Manager configures all of the
resources such as custom kernels, disks, and networks.

Using the image-based provisioning, kernel images can be
maintained for different board types in the system, including
GPUs. Adding, deleting or moving a board to another
slot becomes as simple as a click. Bright Computing’s
Cluster Manager can also simulate crashes to allow
you to fully test your new HA capability. The OpenHPEC
suite also features Allinea Forge, used in over 70% of the
HPC installations, to provide true system level debugging
and profiling. These tools form a fully integrated HPEC
development environment that is fully tested, validated, and
benchmarked. One solution loaded on one installation DVD
with one part number from one company – Curtiss-Wright.

Figure 2: HA Cluster Setup

https://www.curtisswrightds.com/?wp-3U-VPX-systems-design-verification

Authors

5

CURTISSWRIGHTDS.COM
© 2016 Curtiss-Wright. All rights reserved. Specifications are subject to change without notice. All trademarks are property of their
respective owners. W79.0816

Learn More
White Paper: Deploying HPC Tools into Embedded Software Development

to Save Time and Money Products

Article: Turbocharge HPEC System Design with HPC Development Tools

Products

• OpenHPEC Accelerator Suite

• OpenHPEC Math Libraries

• CHAMP-XD1 (VPX3-482): 3U VPX Intel Xeon D DSP Processor Card

• CHAMP-XD2 (VPX6-483): 6U VPX Intel Xeon D DSP Processor Card

• CHAMP-GP3 (VPX6-492): 6U OpenVPX GPGPU Processor Card
with NVIDIA Maxwell

• VPX6-6902: 6U OpenVPX Serial RapidIO and Ethernet Switch

Tammy Carter, M. S.

Sr Product Manager

Curtiss-Wright Defense Solutions

https://www.curtisswrightds.com/?wp-3U-VPX-systems-design-verification
https://www.curtisswrightds.com/infocenter/white-papers/deploying-hpc-tools-into-embedded-software-development-to-save-time-and-money.html?HPEC-avialability-wp
https://www.curtisswrightds.com/infocenter/white-papers/deploying-hpc-tools-into-embedded-software-development-to-save-time-and-money.html?HPEC-avialability-wp
https://www.curtisswrightds.com/news/articles/turbocharge-hpec-system-design-with-hpc-development-tools.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/processor-cards/software-ip/openhpec.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/processor-cards/software-ip/openhpec-math-libraries.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/processor-cards/3u-intel-dsp/champ-xd1.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/processor-cards/intel-dsp/champ-xd2.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/processor-cards/gpu-dsp/champ-gp3.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/processor-cards/gpu-dsp/champ-gp3.html?HPEC-avialability-wp
https://www.curtisswrightds.com/products/cots-boards/ethernet-switches-routers/vpx-switch/vpx6-6902.html?HPEC-avialability-wp
http://www.cwc-ae.com/thomas-melia-product-marketing-manager

